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There is a considerable attractiveness in any approximation scheme 

for physical processes that while maintaining some hold on the nature of 

the approximations, size of the corrections, and signifigance to real 

physical phenomena also yields tractable, often analytic expressions 

for important measurable quantities. The subject of these lectures, 

the eikonal approximation in elastic scattering and production processes, 

has precisely all these virtues and, despite its occasional faults, offers 

a very useful framework in which to discuss high energy phenomena. 

Indeed, the whole idea of an eikonal- or straight-line- approximation 

is generic to high energy or shortwave length physics. As we shall see 

quite explicitly herein it is when a particle begins moving with extremely 

large momentum that it makes a great deal of sense to describe, in a 

first approximation, its path of motion by a straight line. This 

reduction of a three dimensional motion to one dimensional motion is 

at the heart of the tractability of the scheme we shall discuss. 

The plan of these lectures is to first go back to potential scattering 

and discuss in some detail the basic ideas of the eikonal technique. (It 

is my purpose to be frankly pedagogical in these talks and because of 

that the experts will find the start quite simpleminded, but perhaps they 

too will find something useful eventually. ) After that I shall turn to the 

eikonal approximation in quantum field theory and discuss how the familiar 

two dimensional eikonal form emerges for elastic scattering. Finally, 
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we shall discuss a really most interesting topic: inelastic processes 

and production of particles in an eikonal framework. 

A short bibliographical note before we begin. There are innumerable 

references to the eikonal method in physics and we will refer, without 

elaborate apology, to a selected subset of them. The standard source of 

ideas on the eikonal approximation in non-relativistic quantum theory is 

the set of lectures by Glauber at the 1958 Boulder Summer School. 
1 

Further development of those ideas was given by Blankenbecler and 

Sugar’ and their followers3 and in a more modern context by Bjorken 

and his collaborators. 
4 

For a review of these older ideas I can 

recommend without hesitation the lectures I gave at the 1971 Boulder 

Summer School5 at which time a rather different set of topics was 

emphasized. The subject of production processes in eikonal approximation 

has been most attractively pursued by Sugar6 and his collaborators and 

we shall follow his lead in our own discussion. 

I. POTENTIAL SCATTERING 

As for so many ideas we have about modern physics, non-relativistic 

quantum mechanics provided the ground in which the eikonal approximation 

was introduced into modern physics. 
1 

There are at least two ways to 

state the basic idea and since both are illuminating we will consider both. 

The basic problem that we want to address is the evaluation of 

the scattering matrix element 
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(1) 

for a particle of mass m to go from initial momentum Ci to final 

momentum cf in the presence of a potential V(r ) which we take, for 

the present, to be energy independent. This matrix element is related 

A7 
to the differential cross section into a solid angle Q about kf by 

Wcl f$ = 
c 

I 1 CT&, $;) ,d; 

and is related to the usual T-matrix by 

1 (f&j $, = -(ix/,)/! (~J,J, 
This T-matrix element is given in terms of the full solution 

+r’(r’) to the Schrodinger equation with incoming plane waves, 

-.. -9 

expiki. r, and outgoing spherical waves by the familiar 

T&$;) = \d3r 
\ 

,.-ix~" VCr") v!;'(7). 
L 

It satisfies the standard integral equation 

~TG,,$,) = I -!- \d”B v’(~~-~) x 
@ 74” 

x l ,kAq+;E i/ TIG Jr;), 
-2.m ) 

wherek = [ciI = [cf[, q = i;l, and 

-=T 2 
iy (2) = \d% 2 nor V(7). 

(2) 

(3) 

(4) 

(5) 
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Our notation established, we are ready to consider large incident 

momenta ki and think how we are to approximate (4) or (5). Of course, 

we need some criterion of “large” ki to begin with. One will certainly 

agree that if ki is large compared to the primary fourier components 

in the potential ?(ql,then the potential will not severely disturb the 

motion of the projectile and we have the basis for an approximation 

which is not dependent on the details of 7. The size of a typical q in 

G(q) is the inverse of the range, a, of the potential. So let us agree that 

kia >> 1. Furthermore let us imagine that the potential is “smooth” 

in momentum space (this essentially says kia >> 1 for then many 

particle wave lengths will fit into any variation of the potential), and 

that its strength V. is small compared to the initial energy E = k2/2m. 

Then, turning to (4) we may imagine approximating (+I 4 by an incident 

plane wave modulated by some function which takes into account the 

small disturbance due to V : 

?&i’(;) = (Lg+ 1 g 47) J3 (\;‘) , 
L 

(7) 

The Schrddinger equation provides an exact equation for B(T), of course, 

but we wish to imagine that because V is “smooth” the major variation 

in $+’ comes from the exponential and that spatial derivatives of B are 

small. One arrives in this way at an approximate equation for B 

-21 &v, EC3 + L/(T) B[r”) = 0, (8) 
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whose solution is direct 

~(~+J&)= ,&I), if ~Li?;T;1()) (9) 

- ~~ 

choosing B(- m) = 0 and decomposing T into a piece along ki and a piece, 

b_, orthogonal to it. When (7) and (9) are placed in (4) we have an 

expression for T. 

What is the key to our arriving at (9 I? Clearly once we dropped 

higher derivatives of B(T),because of smoothness in V and thus in its 

spatial variation, we arrived at a one dimensional Schrddinger equation 

along k _. 
1 

This is saying quite directly that propagation along the initial 

direction is essentially undisturbed by V, only the amplitude of the wave 

is modulated. This in its simplest form is the eikonal or straight-line 

or semi-classical approximation. It is valid when the projectile indeed 

propagates in essentially a straight line which will be true for large k 
^ A 

and small scattering angles, cos 8 = k i. k f, in the smooth potentials 

we have described. Corrections to the basic approximation of a 

modulated plane wave are elaborated upon in Ref. 5. 

Suppose, in fact, that the scattering angle is small so we may 

write r’s (Zf - ci) as 

r’. &!&) 25 p + N&+1,) , & 1;) 

- I I&+ &,I 

(10) 

(11) = b *&-$,) z ).y $, 
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where 2 = k’ 
f 

- ci is the momentum transfer to V in the scattering. 

One may now cast the expression for T into 

TCk,c) = idab (A: ~v(~+‘,i&.q ~3 $ “i&z)] iLe’!J 
-u3 

recognizing the total derivative in the brackets of (12). This last form is 

what is generally referred to as the eikonal approxiation, and the phase 

i 

+CO 
x (k, b_ ) = p dT V(b_ + .k ) is called the eikonal phase. It is the phase 

-m 
up by the projectile in traversing the straight line path along I? during the 

scattering process. 
a 

This seems as good a time as later to remark on the result of 

our modulated wave approximation. First, suppose we hold A fixed 

andletk- m, then the only term in (13) which survives is 

s 

@;lb ,‘Q’b 

1 
;“; h-k AJd~, (14) 

-La 

which is the Born approximation. This is the correct result for 

potentials like V (I?) which do not depend on k. However, there is a 

value in (13) which is not possessed by the Born approximation, namely 

the eikonal approximation satisfies unitarity in the direct (k) channel. 

To see this, write 

T&C) = -2 
(15) 
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and note that since S = exp i x , unitarity will follow in the high energy 

limit, To be more precise, let the potential depend only on 1 r’/ , then 

X and S depend only on [b 1 = b. We may do the angular integration 

in (15) to find 

T(,hA)= -+-j \,“,b J&,)~S~b,;hh], 
0 

(16) 

The unitarity relation in the high energy limit becomes diagonal, to 

order i/k, when transformed with Jo(ba), and reads 

L,J($$.) 9( I TI$,kl? i- did, (17) 

which means 

which is true for our solution. 

This would seem to provide a very general framework for approxi- 

mations to elastic scattering which satisfy direct channel unitarity. 

Indeed, it does. Any choice of V (even energy dependent) leads to a 

unitary S in the elastic scattering hilbert space, And there is the rub. 

For a large variety of scattering processes: a*p,~ *p, pp. and pp, 

the ratio of oelastic / ototal at even moderate laboratory momenta is 

of the order of f/7 or so. 9 
This means there is a lot of inelasticity 

and we do not want to satisfy unitarity in the elastic sector only. We 

shall suggest a solution to this later on. 

Next suppose the potential V is proportional to the momentum k. 

Then x is independent of k and 
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“#+& 

~~,(&,c) = ,$F@~ 

Lkd 
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(19) 

from (13). That is amusing since ctotal 
1 

(Y i; Im T(k. 0) is then constant. 

And what if V (Y kl+e, E > O? Then the exponential in the eikonal 

form (13) oscillates like crazy unless b = log k, and one finds 

!x~;rz 'I (k,Aj - 
,jpxm SF+& 
q&d 

(20) 

which is not accidentally reminiscent of the fioissart bound. 
10 

This 

shows us how unitarity plays its important role. 

Next let us turn to a more formal deduction of the eikonal approxi- 

mation (13).- one which stresses the straight line approximation. We 

begin with the Schrddinger integral equation (5) in operator form 

T= v i- v &(E)T 
where 

G&E)-‘= E- /a$&, t&, F--i 6 and E= ~a/an. 

The solution to this is 

T= V+ VGV= VGG,‘= G&V, 
where 

G(E)-’ = E- /,a,‘J,-~ t LE , 

(21) 

(22) 

(23) 

We want to approximate G, the full Green function, and evaluate T as 

best we can using (22). 
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We imagine, therefore, that the projectile is incident upon the 

potential with large nnmentum zi, Under the smoothness assumptions 

we made earlier it behooves us to guess that during the scattering 

process the values of momentum encountered do not appreciably deviate 

from k’. 
1’ 

Thus we write G(E)-’ m a form which emphasizes the close- 

ness of < (albeit an operator 

G(E)-’ z E-/+&-V + 

Z if+-&; _ Jr;:& 
ant 

to gi (a c-number) 

$- rJ”/,, 
(24) 

-v - 
(25 ‘) 

(26 ‘1 

taking ( 2.7 ) 

and for the moment staying off the energy shell ki2 = k2. The idea is to 

treat deviations from ci, as embodied in Hi, as perturbations, although 

Hi is a fairly singular operator, and to perform a perturbation expansion 

of G beginning with 

G= &+&cl& = G; t GUIG,. (28) 

The first term is clearly Gi which upon examination of its structure as 

given in (25) represents propagation of the particle in one dimension 

along i; i. This should be no surprise, since we constructed it to do 
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this, but the connection with the equation (8) for the amplitude modulating 

function should be noted. 

We could just as well have made our expansion about cf since the 

smoothness of the potential assures us that p’ will not significantly 

deviate from it either. So we would write 

where 

&-’ = R”+ jR: - q-$ - 

dm 

Gnd 

Of course, 

G = G, t Gf /-I, c = c$ -+- c t/r Gf, 

(30) 

(31) 

(32) 

which together with (28) yields 

G= (GitGq)/a + $ $;,(H~ ttic)GF + G&W-h G;, (33) 

suggesting as a first approximation to G the eikonal Green function 

i (hi. G& (34) 

and corresponding T-matrix 

and 

-I- E(;,,$) = I’+ ’ %w~) “* (35) 
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We will evaluate the incoming eikonal T-matrix,leaving TEf for 

the diligent student. First write 

z 
V & ( ,&a+ la- 2jTeLl12m l 

We desire the matrix element 

‘T;&J~) = d$ IT-,, 10 

rl%$ <&jVG; lxi> (k”-a,“! a. 7 dM ) 
‘ 

(36) 

(37) 

(38) 

(39) 

: j& ,$#7 
d3r i" ' V(;)<i? G, &, ii'-kL‘) (40) 

ii$+,~ am 
1 

which should be very familiar in its last form. Indeed we expect that 

lim (k2-ki2) 

2 2 2m 
CT 1 Gi 1 ki> = (exp iTi.;) B(T), and we won’t be disap- 

ki +k 

pointed. There are many ways to see this. Perhaps the most straightfor - 

ward is to note that the differential equation for <T 1 Gi 1 ci> is 

(41) 

which has the solution 
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i [g&i)t _ ‘ b 
dm 

$T VWS‘S/J j 
0 

142) 

in convenient parametric form. The on energy shell T-matrix is 

r,. c ($,;&)= [d’r i (43) 

which is just what we expect. 

The eikonal T-matrix referring to kf is similarly found to be 

As one can discover in a straight forward calculation, each of TEi and 

T Ef reduce to the expression (13) we have called the eikonal form) 
- 

when the scattering angle between ki and kf is small. 

Having commented on some of the implications of the eikonal 

approximations before, let me close this section with a few remarks. 

(1) One can clearly perform the expansion of G in power of a perturbation 

H about any linear combination aci + bcf of directors which are close to 

the initial or final path. The literature contains several discussions 

of the virtues of various choices8 especially the average momentum3 

x = i ($;+I&) 1 (45) 
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whose main claim a priori seem to be connected with being able to - 

satisfy time reversal invariance, but which appears (for reasons 

mysterious to me) to possess some superiority on numerical and other 

grounds. (2) Despite the fact that (13) satisfies unitarity in the elastic 

sector it may prove useful in nuclear physics problems where the 

elastic sector it may prove useful in nuclear physics problems where the 

elastic channel is important or the form may be appropriate for a few ~- 

channel problem by replacing the real potential by some sort of optical 

potential 

using the V2 term both to represent absorption out of the elastic channel 

and to define o. 
melastic’ 

(3) The correction terms indicated in (33) to 

the basic eikonal approximation may be evaluated term by term. The 

first term 

2 ~~ (&++)GI 
leads to the so-called Saxon-Schiff correction 2,3,5 to the eikonal 

approximation. If the fourier transform of V(r’) falls off as a power 

in q momentum space, then simple estimates‘ mdicate that the eikonal 

plus first correction is an excellent representation of T(cf, ci) over 

all angles. This says physically that for such potentials the projectile 

chooses to make its momentum transfer a’ in one or two steps (no H or 

one H) rather than multiple scattering. For a gaussian potential; this 

is not the case. Then a separate analysis’* reveals that the basic 



-15- 

eikonal is most important. 

NAL-THY-77 

II. FIELD THEORY 

As we well know field theory is much richer than potential 

scattering because of the ability to produce particles. In this section 

we will concentrate on the extraction of the high energy elastic scattering 

amplitude in a relativistic framework and in the next section we will 

turn to consideration of how particle production may be treated. 

The basic thing to realize is that the field theory may be reduced 

to a discussion of potential scattering and that our experience with the 

latter, now enhanced by our eikonal knowledge, will serve as a guide to 

physical approximations. 

So, in what way is field theory just potential scattering? The 

12 answer is that if we know the amplitude for a particle of momentum 

pt [ four momentum = (p,, p,, p y, pz)l to go to momentum p; in the 

presence of a c-number external potential A(X), then we may answer 

any question involving the interaction of those same particles and the 

quanta associated with the potential. Essentially the amplitude 

TA(p;,pi) acts as a generating function 
13 

for emission and absorption 

of such quanta. 

Let us illuminate these remarks by considering the quantum 

electrodynamics of a dirac particle moving in an external c-number 

electromagnetic potential A@(x). Suppose we have calculated 
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TA(p;,ni) to second order in A. This is given by 

‘iLib;)e hAl(f,‘) mlf(p, Bi) e. .ir,~(fdU(PJ 

I+ 

(47) 

or in configuration space 

r: em($) e ++“+p,) 
(48) 

where u and U are the standard dirac spinors, y, the usual 4x4 matrices, 

A(q) the fourier transform of A(x), and S+(z) the standard causal propagator 

for a dirac particle. 

Now knowing this suppose we ask: what is the probability amplitude 

for the particle to scatter in the potential A@(x), to first order, and in 

the same act radiate a photon of momentum k with spin wave function 

em(k)? The answer, as we well know, 

-,-A Q,,+~;+Q = ea QJ,) dbd%/ f%Cp;) @-i@“‘ja”$-!4~ 

x s, (Z-J) b’~A($ e ‘bYqq) + q;) ,+“, 
(49) 

x &A& S+ir-$j', ,+q-a"~~~~,)j:) 

representing emission after and before the scattering on A. It is the 

relation between these two answers that we seek. If we replace in (48) 

Ac(z) by 6: (k) eeik’s , we obviously arrive at the first term of (49), 
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and similarly the second term comes from replacing A(y) by e z(k) e -ik. y 
. 

Both of these things can be done at a stroke by taking a derivative 

of (48) with respect to A@(X) and in each of the two terms inserting the 

* ::; 
appropriate photon wave function a,O(k, x) = ee(k)e -ik*x , then integrating 

over all possible space-time points x where the insertion might have 

occurred. That is 

-$ (1, -3 p; +A? - p’r S Vh-+;) a,* (h,x)j (50) 
'SA,(x) 

which it is easy enough to see is generally true. The fUMy 6 means 

literally: replace A@(Z) under an integral by h4(x-z); that is 

Another question one may ask of (48) is what is the amplitude, 

to second order in e, for the particle to emit a photon and then reabsorb 

it? We must open up the potential at A@(Z), say, propagate a photon 

from z to y via the causal propagator D+(z-y) and then allow the particle 

to reabsorb the photon at y. This yields 

TN0 tb,+p,‘)= $ d+wd4z s D, (W-A s T;; c+,-t p;), (52) Etmssm 8AJW~ F/-&k) 

the I/2 comes from the possibility of the photon’s beginning at either 

y or z in TA(pl+ p;). The general answer for T(pi + p;) no emission is 

gotten by some simple counting 
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-Gh (b*+ kg = 
Emtssmn 

and after taking all derivatives, set AU = 0. 

Interaction between particles which is mediated by the quanta of 

A (y, namely photons, comes from two particles moving in two potentials 

Ai and A2 and from evaluating the probability amplitude to open up an 

Ai spot and propagate a photon, via D+, over to an opened A2 spot. 

Thus the amplitude for electron electron scattering T(pi+p2 - p;+p;) 

in the absence of corrections to the photon propagator D+ coming from 

internal electrons is 

T(~,+p /5;+;) = 

D&J-2'1 Ls 
Dl,,k) x 7 (54) 

x I 5, QP&) --hIa @a+ b:) - =o' 

As promised we now see that a large variety of field theoretic 

phenomena follow from potential scattering probability amplitudes. 

Indeed, if one takes (54) and performs exactly the same kind of eikonal 

approximation on T 
% 

and T 
A2 

as we have done in the previous section, 

then it follows3’ 5 after some straightforward computation that exactly 

the form (13) emerges. The “potential” is just that of the photon 
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exchange which yields the Born approximation. Rather than present 

this derivation here,,we will follow a somewhat different route which 

will lead more smoothly into the discussion of production. All the 

principles of the direct calculation from (54)5 are illuminated. 

Since we are interested in the scattering of a particle in an 

external potential let us consider some particle currents J (x) inter- 
a 

acting with the c-number potential Aa( The interaction Lagrangian 

x, (xl -- &Ix) A, Cd 

leads via the standard rules of field theory to the S-matrix element 

to go from some state i to another f 

(55) 

We want to evaluate Sfi when the states / i> and 1 f> are moving very 

fast in, say, the three direction. 
14 

So we take a standard state, say a 

rest state for a single particle)and boost it along the 3-axis very fast, 

so 
II) = *-iI\; ILO)) 

where e is a boost angle and K3, the generator of 3 boosts. A particle 

at rest is taken by this operation from p, = (m, 0, 0, 0) to 

e-LK30ho = (m&0, 0, 0) m Adi 0). 
(57) 
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Under such a transformation it is convenient not to consider separately 

pt and P,, but the combinations 

for 
-L&O 

e pi = P /J* 
(59) 

since p, gets large and p small when 0 is large. How does J,(x) 

transform? Of course, its components in the cy or 1 direction are 

untouched but 

e. 
L K.3 6 

ZJ-- cxt,x-,&) e- 
L KJ 8 

(60) 

where J zt 
= Jt f J3 and x+ = x0 5 x3 while x is the two vector (x1, x2). 

The matrix element Sfi becomes 

s,; = &-o)e’“r3 j-(9- L\dx+;X-d2x [&A-+LA+ _ ~a]) 
a 

x c- il.30 ILo) (61) 

= <lo 1 T&+[-+ 1 xt d dx-d2x ee ~+k-t;c+,e’x-,;)A- (x+,x-,x)-j,) j;,, 

+ 0 (e- “)j (62) 
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or on changing integration variables to x 
+e 

=e X-J 

Sfi = &IJiEiLt\-$\dx&-Ci% J+(c,~.,~)A-(x~,~,~))~;,) 
(63) 

+ me+ 

which if we define 

j id = $5 dx- .&(0,X-J) 
and 

CL(x\ =-$ )L+ A- (Xt, o,& 1 

(64) 

(65) 

takes on the two dimensional form 

r)rL - (f,,] -&.i+ -iSd% 9 td &d) 1 lo) f 0 b+$ (66) 

however, the time ordering which remains must be discussed before we 

are so excited about (66). 

To get rid of the time ordering, which we must do in order for 

Sfi to have the true exponential form exhibited by the eikonal approxi- 

mation, it is necessary to make some ansatz about the component J+ 

of the particle source operator. The only “time” left to be ordered is 

the dependence of J, on x-, so if we make J, a c-number with respect 

to its dependence on x- we may remove the T operation and have 

essentially an eikonal or more precisely an exponential form for Sfi. 

This requires that J+(x+, x-, x,) and J+(y+, y-, x ) commute at x- = y- 
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..- 

LJt bx-,_x), T ly+, 5) 41-J J'-;y = @, 

Now Je(x) commutes with JP(y) for (x-~)~<O, already if it is a local 

operator. So since 

(x-$)“z (x-y)+ (x-y)- - IX-$L~~, (68) 

we see that automatically (67) is satisfied if (x -y j2 is not zero. The - - 

additional assumption i5 is that if x-y is lightlike [ J+(x),+(y)] = 0. 

If this is true, then 

sfL 5 (FI @+ -‘ pK j Ix) Q 0) 1 L>, (69) 

which is essentially the eikonal answer. 

It is not obvious that all currents JLy(x) are such that their plus 

components commute on the light cone. Indeed, as Weinberg 
15 

has shown, 

this places strong dynamical constraints on the matrix elements of J 

which are tantamount to generalized sum rules of the Drell-Hearn- 

Gerasimov variety. One implication of this is that if we return to our 

problem of a dirac particle scattering in an external potential and do 

not add radiative corrections of a self-energy or vertex correction 

variety, then the particle must have no anomalous magnetic moment and 

the eikonal technique “works” only if g = 2. This is consistent with 

more direct approaches to this question. 

In the early work on eikonal approximations the c-number nature 
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of J+ was arranged in a very simple fashion: it was taken to be a 

c-number. The physical meaning of this is straightforward. If the 

particle which is being scattered neither produces other particles nor 

any quanta of A (that is, there are no radiative corrections on the 
u 

particle line) nor does it change its co-ordinates such as spin, helicity 

or, if it is taken composite, its internal wave function, then the 

transition operator causing the scattering is acting in a one dimensional 

space of particle variables and it is essentially a c-number. The 

assumption that all these conditions be met is generic to older treat- 

ments of the eikonal approximation. Our exercise above shows us that 

a more general class of scattering processes may take the exponential 

form of the eikonal. Clearly if J,(x) is an operator still, the particle 

scattering in the potential can make many intermediate states of varying 

chatter before it emerges in state ) f>. 

The appearance of the commutator of the particle source, J, on 

the light-cone might at first seem strange. However, just this kind of 

quantity is to be expected in relativistic theories on the following 

heuristic grounds. When we deal with very fast particles, say p3+ m, 

on the mass shell, p2 
2 

=m, then we are specifing two out of four 

components of p; namely p3 and pt = p3 + (p -2 + m2) / 2p3 (to leading 

order), where p = (px~, py 1. In co-ordinate space we are thus providing 

information on the variables conjugate to pt and p3; namely t and x3. 
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Indeed, we are constraining x3 = +t for forward or backward going 

particles respectively. This places us very near the light cone in a 

space time diagram and tells us that for p3 + m, the dynamics of 

scattering is gathering information from the whole light cone and not 

just the canonical space-like surface of equal t. To put it another way, 

the “natural” variables for p3 - m processes would appear to be xt + x3 

and 5, not separately xt and x3. Of course, any description must be 

equivalent; it is just that one’s good sense suggests it will be simpler 

in these light cone variables. 

One more word before going on to production. This same 

heuristic argument tells us why we keep finding two dimensional 

integrals. It’s simple; we have given p3 and pt, thus the dynamics 

lies in the two dimensional subspace we have said nothing about., 

III. PRODUCTION PROCESSES 

In view of some of the fairly drastic approximations which are 

going to be made in this section, I feel it may be worthwhile to recount 

a few of the salient features of data on production processes which, 

thanks to the wide attention directed in that direction for the past several 

years, is now available in useful form. First, as we have noted before, 

the study of production or inelastic reactions is bound to be important 

for high energy physics because experimentally even at AGS or CERN-PS 
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or Serpukhov energies, plab = 30-70 GeV/c, the total cross section is 

on the order of 7 to 10 times o 
elastic’ 

It is unlikely that we will under - 

stand the latter or quasi-two body processes taken alone. Second, o 
total 

appears to be extraordinarily constant over enormous ranges of incident 

energy. Strictly speaking, this is known for pp scattering from 

‘lab 
= 25 GeV/c to plab = 1500 GeV/c as measured at the CERN-ISR. 

For Kp and rrp scatterings the detailed situation is more fluid. Third, 

the average transverse momentum, which we have called p , seems to 

be quite small even at the highest available energies. The distribution 

in 1 p 1 = pT of detected particles tends to be 

@Id/,; ?, w.ppr" ,,v‘ 

‘k &I+- bbT, 

(701 

with a = 3 or 4 (GeV/ cl-’ or b - 6 (GeV/c)-t. So most hadron physics 

is within 0 5 pT 5 0.5 GeV/c. Fourth, and this is most important for 

what follows, the distribution in momentum of particles detected at 

high energies is quite different for particles which are definitely 

produced (e.g. , TI or K or 5 in pp collisions) from the distribution of 

particles which can “come through”, e. g., protons in pp collisions. 

The effect seen is that for “through going” particles there is a pronounced 

maximum for very large or very small longitudinal momenta when 

measured in the center of mass. That is, the beam or the target particles 

\ 
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go through. The distribution of produced particles, on the other hand, 

is largest at small center of mass p 
long’ 

This phenomenon, which is 

very distinct in the ISR data at p 
lab 

= 1500 GeV/c is popularly known 

as the leading particle effect. 

The rest of this section will be devoted to a model which is 

eikonalistic and attempts to incorporate many of the features just 

described. I6 The particular type of process which I have in mind 

will be Nucleon + Nucleon - Nucleon + Nucleon + some produced things 

(n or K or what you like). Taking a strong hint from the data we treat 

the nucleons as leading particles and treat their co-ordinates as 

c-numbers. That is, the nucleons are treated as though going objects 

whose variables, if they are altered at all, are not altered appreciably. 

This c-number nature of the nucleons is, of course, precisely the trick 

that allows us to eikonalize this process. 

Since there are always 2 nucleons in both the initial and final 

states let us label the amplitude for n pions + 2N + m pions + 2N as 

T -, and let us agree to call all produced particles pions. 17 
We know 

from earlier work the Too (elastic scattering) takes the form 

?;;Ja,t\= LA da8 eLQag To (a,&) 
s ) (72) 

where 

5, (e,!& e 1 ixw9- l 
J (73) 
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and s is the usual square of the incoming c. m. energy, and t = - 1 Q / 
2 

is the four momentum transferred. This suggests that we operate in 

a space where the nucleon co-ordinates s and B are specified, for there 

we will have a good chance to construct a set of T mn which are unitary. 

(Recall that unitarity was a nice feature of eikonal approximations. ) 

The nucleons, then, will be treated as a source, a c-number 

source, for pions which will be parameterized by the co-ordinates s 

and B. The leading particles carry off a large fraction of the initial energy, 

and we wiil imagine that the pions can move freely in phase space with no 

special constraints on them due to energy momentum conservation. That 

is to say, since the pions come out with small p 
long’ 

in the c. m., and 

if their number is not large, as we will shortly impose, then energy 

momentum constraints are essentially negligible on them. Our problem 

then is to find the S-matrix which comes from a c-number source 

p(s, B; x) which can emit and absorb pions. 

A digression on convenient notation before we solve this problem. 

It is useful to use instead of s and p 
long ) 

;the dimensionless variable 

rapidity, commonly called y. The rapidity of a particle of mass m, 

momentum (yT, p long) is defined to be 

‘#J - i ,!wJ p+%J /(E- /&J ] ) (74) 

and is essentially 

MJ= ~mvj ic, (75) 
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or the angle of “rotation” in the time-z plane to produce a particle of 

momentum p long’ 
YO The incident nucleons have center of mass rapidity +I for the 

beam and target respectively, where y, = log s to an excellent approxi- 

mation. The values of y. in the real world are not overwhelming: 

y = 4 at the AGS, y, = 6 at NAL, y, = 8 at the ISR, and at the “planned” 

ISABELLE 200 GeV/c colliding beam facility y, = 11. 5. The real 

advantage of rapidity is that invariant phase space is simple 

d3j& = da dyT. (76) 

Usually, energy momentum conservation is complicated in terms of y, 

but we have just agreed not to worry about this, so we are spared that 

misery. 

Now we are ready to calculated Tmn. We want to determine the 

pion field e(x) in the presence of the c-number source p(y,, B; x). 
18 

To do this we must solve the equation 

The solution, of course, is 

c+(x)= ~d4$S.-$ fy), 
where 

&a+ a,“) D h)= x4 bd, 

(77) 

(78) 

(79) 

and we have temporarily dropped the yo, B parameters. 
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Which function D(x) we want is dictated as usual by the boundary 

conditions of the problem. 

We wish to express the out field $,,(x) for departing pions in 

terms of oin(x) 

c+,,+(x)= &,,(x)+ jd4t %x-d PC’), 

(;3L& $b& (x) = &n~~ QLt (x) = 0) 

so (a” +d) 6 = 0, 

Since 

4(x, = &,+, (x) t \d4t D, (x-z) pCz)> 

and 

$qx)= +,,“, IX) t Idh DA (X-Z) +, 

where D 
R 

and D 
A 

are the retarded and advanced Green functions 

satisfying (79 1, we have 

b (t) = D,(t)- D*(zl~ 

(81) 

(82) 

(83) 

(84) 

(85) 

The integral representation of this difference Green function is 

(86) 

It is useful, then, to decompose $out and ~$5~ into creation and 

annihilation operators in momentum space 
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(87) 

where we remember that 

i +L6h~ 3 
alai@ -;! 1 = 1 R31 

agO acad 
(89) 

= @jT “J (90) 

4F’ 
To guarantee the proper equal time commutation relations for $in(x) 

and $out (x) we take 

L-a, (J,@)) CL; (z., i&j]= 41a7d3 sl,-m@-k J, (9i) 

and 

From the solution to our problem, Eq. (85), we now learn 

n#&&,)= uill Q,$T) + ‘/a pcy,gJ 

where 

p Qj) !$,) = Sd’x per) e-; v 
with .., 

g= (g$ ST, g3) ) 
‘14 

~=+[/~Aai+m’ll, 

(93) 

(94) 

(95) 
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(46) 

The S matrix is defined to be the operator which takes ain to aout 

so we have 

s a,, (y)g~,) s+ = %d (f)$TL 
or 

6 %I (y,J$r)] = $ fJ($)$,) s 1 
This form suggests we seek a solution of (98) as 

S = (2 A9 Id& G, gTl a: (8, gJ % 
%* ik!+ s d da i- YQ)%T) a, Q, &I 

(98) 

(99) 

where C is a c-number normalization constant. Then using the operator 

identity 

[d, 8-l = lA,& 4 
which is true when [ A, BI commutes with A and B, we find 

rs,aiw ~~,,%T)l= 1 b,$T) = ; plg,,p), 

(100) 

which solves our problem. The normalization C is found by requiring 

that is, unitarity. This makes C take the value 

using (101). So we have constructed an explicitly unitary S-matrix 
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operator which acts in pion space (the nucleons are always present so 

the “vacuum” is the two nucleon state). Of course if we want T 
IIlIl 

we must evaluate 

T-,, = <&l, M 1 s-3 1 Jn,G 

= &,m(S b, 3) - T&, 
where the n pion state 1 n, in> is 

I at, (jI, %,,I . .. a,', cp, g,J I o>, 
4T 

(1’36) 

in a standard manner. 

It is amusing to ask for the elastic scattering matrix which is the 

vacuum to vacuum transition; i. e., no pions in, no pions out: 

-K&., E) = (01 SIO - LL 

= c-1, 

(107) 

and reference to (103) shows that indeed we no longer have a unitary 

S matrix in the elastic sub-space. In fact, since C = exp-(real number), 

the eikonal phase is pure imaginary and thus the “potential” has become 

completely absorbing! 

How are we to regard this solution of the eikonal production 

problem? Since the source function p(y,, B; y, s T) is unspecified 

there is an enormous freedom in possible unitary answers. One must 

think of this as a class of solutions which for any p yields a unitary 
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S-matrix and thereby provides an attractive framework into which one 

may put his best guess or theory for p. There are certain constraints 

on p which come from experimental knowledge on cross sections, 

multiplicity, etc. , and we shall now look at some of these quantities. 

The total cross section is given by the optical theorem as 

GT (d) = $ rlrl -Ii, (.yb) 0) 

for s large, and in the present solution is 

~~(4) = IdaB rC(y&-d, 

(109) 

(110) 

and this only suggests that for large s or y, = $ log s, C(yo. B) is 

independent of yoin order to reproduce the constant total cross sections 

that are observed. 

The distribution of produced pions, that is, the single particle 

inclusive spectrum, is defined to be 

&l- [lb% -+/,I~+ one plbrl + aMy+hi”j] = 

(111) 

1 
da8 p? 

11 t dJ1d T’“‘ dJndafrn /(hi n)a,(@ s 10,): 
c4cadq h I n 

Now /<+I) CQ~‘J&)S lo)? = 

(412) 
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and summing on n in (111) we have 

do- = 
d$id$r1412ir13 . 

$%eCQS5! r 1 ( 6 / y,g,)j~ 
4 0 h-~ 

(113) 

So knowledge about the inclusive distribution is direct knowledge on the 

source function p. 

Another interesting quantity is the n pion cross section on(yo) 

which is 

(114) 

% $) = da/? dy,d’~,,~ dy, &n I<~;~ 1 s 10) 1’ 
q Qo’ s C4ian)‘J 7\ 

= (115) 

and shows that in B 
-4 

space one has a Poisson distribution in n with mean 

<n ‘yo, 1)) = p4s 76. qo,g (116) 

z - 
d, 5 

4f 4T I f&,BJ #,$Tf) 
(t17) 

4tan3’ 

which should really come as very little surprise. That is to say, once we 

ignored the constraint of energy momentum conservation on pion production 

in y o, B space, the pions were emitted independently and this is precisely 

the condition under which a Poisson distribution follows. 

The mean multiplicity of particles is given by 
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/ q- 
(118) 

= 
s 
da8 blyo,@) 

(119) 

= d2B do dag, 
5 4 laic)3 

(120) 

This quantity is known to be approximately log s = y,, from both cosmic 

ray and CERN-ISR experiments. By the way, this fact of “small” 

average multiplicity (relative to the d; which could occur if all the 

incoming energy went into particle production) provides justification for 

the input of the present model that a only small number of particles with 

low center of mass momentum are produced,and so one may approximately 

ignore the conservation of energy momentum for produced particles, 

once the leading particles are accounted for. 

This really completes our discussion of eikonalized production 

processes. One might proceed further in two directions; one formal, 

one phenomenological. The first would consist of generalizing the 

c-number source approximation to some kind of light cone commutator 

statement, as was done for elastic processes. The other would be to 

find attractive phenomenological forms for p(y, , B; y, q T) and predict 

the results of correlation phenomena to be seen at NAL in , say, two 

particle inclusive processes. At this time I shall refrain from answer- 

ing these interesting questions both to give the student something to 

work on and to give the lecturers at the next summer school something 

to talk about. 
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